
Balanced Forces

Use the words below to complete the passage about balanced forces.

directions	gravity	move	force
happen	balanced	strength	equal

Two forces of the same _____ but acting in opposite _____ are called _____ forces. Take this diagram as an example:

_____ is pulling down on the person, causing the person's feet to push down. The ground is pushing up against the person's feet. The force of the gravity is _____ in strength and opposite in direction to the force of the ground. The result is that the person is still.

Any time	there	is a	balanc	ed for	ce, t	he d	objec	t
does not								

Imagine if the _____ of gravity was stronger than the force of the ground. The person would be pulled into the ground by the stronger force of gravity.

What about if the force of the ground was stronger than gravity? What do you think would?

Find the Words! E O F P U L L S G G O U R P O U B C C M Q R Q S S P R S Q Z W F A A B F X O C H I U E R A V A B Z S E G T H Q I H I L V O I H M P B Z C O T A G I T N A M U W T L Y N Z Y E S G D D X I Q Z C Q B S O N E U U O U H E Y K Q R E H K F N O T D O O O U T E R U A Q B P C G G M S L F G O R W B I balanced force pull push gravity opposites magnets friction

Balanced Forces Answers

Use the words below to complete the passage about balanced forces.

directions	gravity	move	force
happen	balanced	strength	equal

Two forces of the same **strength** but acting in opposite **directions** are called **balanced** forces. Take this diagram as an example:

Gravity is pulling down on the person, causing the person's feet to push down. The ground is pushing up against the person's feet. The force of the gravity is **equal** in strength and opposite in direction to the force of the ground. The result is that the person is still.

Any time there is a balanced force, the object does not **move**.

Imagine if the **force** of gravity was stronger than the force of the ground. The person would be pulled into the ground by the stronger force of gravity.

What about if the force of the ground was stronger than gravity? What do you think would happen?

Find the Words!											
E	0	F	Р	U	L	L	S	G	G	0	U
R	Р	0	U	В	С	С	М	Q	R	Q	S
S	Р	R	S	Q	Z	W	F	Α	Α	В	F
×	0	С	Н	ı	U	Ε	R	Α	٧	Α	В
z	S	Ε	G	Т	Н	Q	ı	Н	1	L	V
0	ı	Н	М	Р	В	Z	С	0	T	Α	G
1	Т	N	Α	М	U	W	Т	L	Υ	N	Z
Y	Ε	S	G	D	D	X	ı	Q	Z	С	Q
В	S	0	N	Ε	U	U	0	U	Н	Ε	Υ
к	Q	R	Ε	Н	K	F	N	0	T	D	0
0	0	U	Т	Ε	R	U	Α	Q	В	Р	С
G	G	М	S	L	F	G	0	R	W	В	1
bala	balanced force			pull				push			
gr	gravity opposites					n	nagr	nets	3	fric	ction

